29.09.2020

Beşgen, Ongen, Euclid

Bir çember içine eşkenar üçgen, kare ve düzgün altıgen çizmeyi ilkokulda öğrenmiştik. Düzgün beşgen çizmek bunlara göre çok daha zordu, çünkü açı ölçmek için hassas bir yöntem bilmiyorduk. İletki kullanmanın zorluğunu o zaman anlamıştım... Meğer matematikçilerin kabul ettiği bir araç değilmiş iletki!

Yalnız cetvel ve pergel ile (açı ve uzunluk ölçmeden) düzgün beşgen çizmenin yolunu Euclid'in Elemanlar kitabında buluyoruz. Yöntemin modern bir yorumunu bu sabah gif dosyası olarak buldum, hemen aktarıyorum. (Kaynağı referanslarda)

Hareketli resim kendisini açıklıyor ama neden doğru olduğunu üç adımda, üç şekil üstünde anlatabilirim. Euclid bu resmi görseydi, kitabındaki Önerme IV:10'u hemen tanırdı. Çünkü bu işlemin her adımını, matematiksel bütünlük içinde 2300 yıl önce anlatmış.

1. A merkezli birim çemberin merkezine, kenarları 1:2 oranında bir dik üçgen çizelim.
BC uzunluğunu altın oran kullanarak yazalım: 
$\sqrt5/2 = \varphi -1/2$ 


2. B merkezli, C'den geçen çemberi çizelim. 
Çemberin iki yarıçapı eşittir: BC = BD
Şekildeki CD uzunluğu, düzgün beşgen probleminin geometrik çözümüdür. AD uzunluğu da $\varphi -1$, birim çember içindeki düzgün ongenin kenar uzunluğudur. (Neden?)

Problem sadece düzgün beşgeni çizmekten ibaret ise, ongenin köşelerini işaretledikten sonra birer atlayarak birleştirmek yeterli. Kenar uzunluğunu sayısal olarak bulmak için bir adım daha gerekiyor.


3. C merkezli, D'den geçen çemberi çizelim. Birim çemberle kesiştiği iki nokta, aradığımız düzgün beşgenin köşeleri olur. Kalan iki köşe yine aynı p değeri ile bulunur.
İki üçgenin yaklaşık kenar uzunluklarını ve karelerini bir tablo halinde görelim:
   uzunluk  karesi
AB  0.500  0.250 1/4
AD  0.618  0.382 2−φ
BC  1.118  1.250 5/4
CD  1.176  1.382 3−φ

Peki neden CD uzunluğu düzgün beşgenin kenarına eşit? Cevabı yine Euclid versin:

Önerme XIII:10
Bir eşkenar beşgen bir çember içine çizilirse, beşgenin kenarı üzerindeki kare, aynı çember içine çizilen altıgenin kenarı ile ongenin kenarı üzerindeki karelere eşittir.

Sayısal bir p değeri aranırsa, ACD dik üçgeninde
$p^2 = 1^2+(\varphi-1)^2 = 3-\varphi$ eşitliğinden hesaplanabilir.

Çember üstünde eşit aralıklı noktalar

Bir çember içine eşkenar üçgen, kare, düzgün beşgen, vb yerleştirme problemi, aslında çemberi $n (=3, 4, 5, ...)$ eşit parçaya bölmekten ibaret. Başka deyişle, birim çember üstünde eşit aralıklı $n$ nokta bulmak istiyoruz. Verilen her $n$ için çözüm var ve açı ölçerek kolayca bulunur.

Açı ölçmeye razı değilsek, yalnız cetvel ve pergel kısıtı ile, her $n$ için çözüm olmayabilir.

Küre üstünde eşit aralıklı noktalar

Üçüncü boyuta geçince durum farklı: Birim küre üstünde eşit aralıklı $n$ nokta aranıyorsa, sadece beş çözüm var: $n = 4, 6, 8, 12, 20$ olabilir. Platonik cisimler olarak bilinen beş düzgün çokyüzlü. Euclid Elemanlar'ın son kitabında bu çözümleri buluyor ve son önermesinde (XIII:18) hepsini yarım çember içinde göstererek muhteşem bir güzellik sergiliyor.

Şimdi de diyorum ki, yukarıda sözü edilen beş şekil dışında, birbirine eşit, eşkenar ve eşaçılı şekiller tarafından içerilen başka şekil [cisim] çizilemez.

Ödev

1. $(\varphi-1)^2 = 2-\varphi, \quad 3-\varphi = (5-\sqrt 5)/2$ eşitliklerini doğrulayın.

2. Kenarları $(1, 1, \varphi-1)$ olan üçgende neden taban açıları tepe açısının iki katıdır? Düzgün ongen yapmak için bu üçgenlerden kaç tane gerektiğini düşünerek, AD uzunluğunun ongenin kenarı olduğunu gösterin.

3. Şekildeki A noktasının DE doğru parçasını altın oranda böldüğünü gösterin.

4. Euclid düzgün beşgen için tutarlı olarak "eşkenarlı ve eşaçılı beşgen" ifadesini kullanır. Yukarıdaki önermede neden "eşaçılı" nitelemesine gerek duymamış?


Referanslar

Öklid'in Elemanları, Ali Sinan Sertöz, 2018
sertoz.bilkent.edu.tr/elemanlar.htm

Yazıya konu olan hareketli resim şurada:
en.wikipedia.org/wiki/Decagon

GIF için linkler: Aldoaldoz / CC BY-SA

Resmi parçalarına bölmek için link: ezgif.com/split

Beşgen sayfasındaki yöntemler çok daha karmaşık:
en.wikipedia.org/wiki/Pentagon

Altın Oran: /2017/07/altn-oran.html